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A B S T R A C T :  The prohleni of data eticoditig arid 
,feutitre .selectioti,for trainitig hack-propagation neural 

nerrrwrks is well known. The hasic priticiples are to 
awid  eticqptitig the utiderlyitig structure of the data, 

arid to  uvoid using irrelevant inputs. I n  the real world 
we ofteri receive data which has beeti processed by at 
leust one previous user. The data niay cotitaiti too 

tnunj itistatices of sonie class, too few itistatices of 
other clusses, atids ofteti include ninny irrelevant or 

reclutltltItltfiel~,s, 

Previous approaches have focussed oti the atialysis 

of the weight niutrix of trained tietworks to  determine 
thr niugnititde of cotitrihutioti particular inputs niuke 
to the output to rJetertnitie which are less .signif cant. 

This ptrper exaniines nicu~ures to determitie the 
futictiotial contribution of inputs to outputs. ltiputs 
bvhich include mitior hut uriique itforniation to the 
ti etwo rk U re nio re sign i fcan t thati itip uts with high er 
nitr,qtiitutle coritrihutioti but providing redundant 

inforniatioti also provided b j  another itipict. 

This paper presetits a tiovel,futictiotial atialysis of 
the weight itiutrix bused oti ci techriiyue developed f o r  
deterniitiing the behaviourul sigriificance of hidderi 
neurotis. This is compared with the applicutinti of the 
.stutie technique to the rruitiitig arid test data available. 

Finally, a novel uggregutioti technique is 
it i trodit ced. 

1 .  INTRODUCTION 

The initial network topology was 12-7-1, being 
twelve inputs, seven hidden neurons, and one output 
neurons. The data for this study was acquired from a 
novel eye gaze detector developed at Westmead 
Hospital. The major advantage of eye gaze data is that 
when we know where the eye is looking, we know 
the contents of the major input channel to the brain 

For example, the point of first fixation for 
schizophrenic versus normal controls on a neutral 
affect face produces results which statistically separate 
the two cases. This work extends this classification 
process to reliably classify the individual cases based 
on multiple responses to a wire frame drawing, a 
neutral affect face, a happy face and a sad face. This 
initial trial used 10 schizophrenic and 10 noi-mal 
individuals, with 4 responses of 10 seconds duration 
recorded at SO Hz. 

The detector uses infra-red to detect the difference 
between the angle of reflection from the front of the 
eye and the retina to determine where on screen the 
subject is looking. The data used i n  this paper makes 
use o n l y  of the summary statistics of the entire data 
stream, with respect to fixations of gaze of 200 msec 

or longer. 
The twelve inputs are: x and y co-ordinates; 

overall distance, horizontal, and vertical distance to 
previous fixation point; distance to previous fixation 
point relative to scan distance; pupil area; pupil area 
relative to pre and post-stimulus pupil areas; dwell 
time; and relative dwell time compared to the average 
dwell time; and finally, which image in being looked 
at. 

The single output classifies by values 
above/below 0.5 whether the particular patterns 

belongs to a normal control or schizophrenic patient. 
Note the this problem is particularly hard, as the 
network needs to determine a classification based on 
the current eye gaze location and the difference from 
the previous one. 

Previous work has investigated the use of related 
soft computing techniques, being vector quantisation 
and simulated annealing i n  the classification of 
schizophrenic versus medicated schizophrenic patients 
versus normal controls [ I ]  
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The network was trained using error- 

backpropagation [ 2 ] .  All connections are from units 
i n  one level to units i n  the next level, with no lateral, 
backward or multi-layer connections. Each u n i t  is 
connected to each u n i t  i n  the preceding layer by a 
simple weighted link. The network is trained using a 
training set of input patterns with desired outputs, 

using the back-propagation of error measures. 
The network is tested using a validation set of 

patterns which are never seen by the network during 
training and thus can provide a good measure of the 
generalisation capabilities of ithe network. Thus all 
results quoted i n  this paper are for the test set. 

2 .  MAGNITUDE MEASURES OF 
CONTRIBUTIONS 

Carson [3] proposed the a measure for the 
proportional contribution of an input to a particular 
output based on the size of input to hidden weights 
relative to the sum of all inputs to that hidden, and 
weighted by the magnitude of the connection to the 
output neuron concerned. This value was then 
normalised to account for the overall magnitudes of 
such contributions from all inputs. 

G .  = i k  

A disadvantage of this approach is that during the 
summation process, positive and negative weights 
can cancel their contribution which leads to 
inconsistent results. 

Wong, Gedeon and Taggart 141 used a measure for 
the contribution of an input to a hidden layer neuron 
which used the absolute values of the weights. 

p = l  l w P J l  

Milne [ S ]  commented that the sign of the 
contribution i s  lost, and modified Garson's measure 

by taking the absolute values of the two 
normalisation terms in Garson's formula. 

n h  w 

Mik= 

Gedeon [6] introduced an extension of the absolute 
value technique [4], by detining a measure for the 
contribution of a hidden neuron to an output neuron 
similar to the measure p,, used previously, and 
combine the two measures by aggregating the 
contributions using all possible Connections between 

the desired input and the output. 

I W r k )  
r=  I 

r= I 

The benefit of this approach is that the magnitude 
of the contribution is disentangled from the sign of 
the contribution. The magnitude of contributions is 
significant i n  indicating whether an inpu t  is 
important, while the sign of contribution is largely 
irrelevant in the decision to remove or retain an input, 
and is recoverable in any case from the raw data by 
simple statistical methods. 

Each of the above techniques could be extended to 
networks with larger numbers of hidden layers than 
the topology used in this experiment. 

3 .  FUNCTIONAL MEASURES 

The technique of distinctiveness analysis 171 uses 
hidden neuron activations over a training set to 
determine similarity using the angle between the 
multi-dimensional vectors thus formed. 

The technique has been extended for examining 
the functionality of hidden neurons using the weight 
matrix [8], and is adapted here to determine the 
functional differences between inputs as represented 
by the pattern of input to hidden weights. 

For comparison purposes, the pattern of values of 
inputs in  the labelled set available (being both 
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training and test sets) is analysed in an analogous 
fashion, That is, the values for a particular input in 
all of the instances i n  the labelled set are used to 
construct a iiiulti-diiiiensional vector. 

This 1,334 dimensional vector is then compared 
to the vectors for the other 1 I inputs. Note that this 
is essentially a first-order correlation measure, and 
does not incorporate the possible higher order features 
that a neural network could learn and incorporate into 
its weight matrix. Hence we would expect this 
measure to be less reliable than the distinctiveness 
approach applied to the weight matrix. 

The distinctiveness analysis technique was 
initially developed for pruning hidden neurons, and 
provides ranking i n  which pairs of similar neurons are 
listed together. During pruning, most often only 
single neurons are removed at a time, i n  the process 
of fine-tuning the generalisation of a trained network. 

For eliminating inputs, however, we would wish 
to remove larger numbers of inputs at one time, as 
the elimination of a single input produces relatively 
little savings on the time taken to train a network. As 

a compromise, i n  this paper two inputs are removed 
together. Since we wish to remove more than one 
input ,  some aggregate measure is required, which is 
provided here by the average angle to all other 

In  the following section the results for both of the 
above forins of functional analysis, together with the 
aggregated rankings are provided, listing the order of 
significance of inputs. 

To maintain comparability with the previously 
used m a g n i t u  d e in e as u res, the three me as u re s 

discussed earlier are used to provide a joint ranked list 
based on the individual lists, which can be assumed to 
be representative of such magnitude ranking 
techniques and less affected by the computational 
peculiarities of the specific measures. Thus, the input 
which is highest i n  all three lists is clearly the most 
important by magnitude techniques and so on. 

4 .  RESULTS AND COMPARISONS 

I n  the following table, model I is the distinctiveness 

of inputs over the labelled set of patterns, of which C 

is the aggregated form, W is the weight 
distinctiveness, of which U is the aggregated form. 

The combined ranking for the three magnitude 

measures is given in the last column. 

The following diagram show the base case, using 
the fu l l  complement of inputs as analysed for the 
above table. 
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The anti-correlation of the total sum of squares (tss) 

value and the number of patterns correctly classified 
demonstrates the degree of difficulty of the 
classification problem for the network. There are a 
number of inputs which are providing irrelevant 
information, and the network was trained using sum 
squared error measure, when the network provides a 
better result i n  terms of low tss, the number of 
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correctly classified patterns is reduced. 
The following diagrams shclw the results on using 

the above table to eliminate some pairs of inputs. 
These are the top two inputs from the table, being the 
least significant inputs. 
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There is now a better correlation between tss and 
total correct, however overall the number correct has 
decreased indicating some significant information has 
also been lost. 
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The correlation is much bette:r, and less significant 
information has been lost. This demonstrates that the 
aggregated measure is a better predictor of 
signitkance, at least for this functional measure. The 
I and C measures depend only on the labelled pattern 

set, and input elimination using these measures has 
reduced the number of correct classifications overall. 
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This diagram has shown that the anti-correlation 
has been removed, and a slight correlation introduced, 
similar to I. Note that the overall number correct is 
significantly improved i n  W over I, which indicates 
the former is a better indicator of significance. 
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The above diagram demonstrates the correlation 
hoped for, with higher total correct classifications 
than the original base case. This again demonstrates 
the advantage of the aggregated measure. The diagram 
also shows that the network learnt weights provide a 
better indication of the significance of inputs than the 
simple statistical properties of the labelled set. 
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Mag. 
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The correlation is slightly improved, but there is now 
a discontinuity in the quality of results produced, and 
the number correct are overall significantly lower. 
This indicates that at least one of the inputs removed 
was significant, notwithstanding the measure. This 
significant input is probably input 9, as the other 
input (12) is in  the least significant pair i n  three of 

the functional measures used above. To test this, a 

further pair of inputs were eliminated, using the most 
significant inputs as determined by the U ,  and W 

measures. 
The observed discontinuity possibly indicates that 

there is now a ‘local min imum’  which is easier to 
find than the best m i n i m u m  that the network is 
otherwise able to find given its inputs. 

most signif. U+W 
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The above diagram demonstrates that the effect of 
removing the two most significant inputs has a 
catastrophic effect on network performance. The 
lowest tss value is now higher, and the total number 
correct is no longer related to the tss value. This 
suggests that the number correct is now due to 
chance. 

5 .  CONCLUSION 

In  this paper a number of functional measures for 
determining the significance of inputs were 
introduced. They were contrasted with with the 
traditional magnitude based input significance 
measures in both qualitatively by means of dicussion, 
and quantitatively, by experimentation. 

The experimental work demonstrated that the 
functional measures, particularly based on the 
analysis of the network and not just the data, produce 
better indicators of the significance of particular 
inputs, as shown exhaustively by the elimination of 
pairs of inputs judged to be least significant by each 

measure. The effect of eliminating the two most 

significant inputs was to destroy network performance 
which serves as extra validation of the ut i l i ty  of 
functional measures introduced. 
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